Abstract

The Precambrian Southern Granulite terrane of south India has a crustal evolution history broadly bracketed between the late Archean and Cambrian with records of polyphase deformation, metamorphism, and magmatism. The Southern Granulite terrane comprises distinct crustal blocks bounded by shear/suture zones that have been variably correlated with supercontinent fragments including Madagascar, Sri Lanka, Africa, Eastern Ghats, and Antarctica. However, the timing and mechanism of assembly of different crustal blocks within the Southern Granulite terrane and its linkages with counterparts in East Gondwana are highly debated. This study aimed to unravel the complex crustal evolutionary pattern of the terrane by generating robust zircon U-Pb/Hf isotopic data from basement charnockites, gneisses, granitoids, and alkaline intrusive units from the central part of Southern Granulite terrane and comparing these results with similar data from different East Gondwanan terranes. The study identified four distinct crustal growth episodes in the Madurai block: (1) Neoarchean−early Paleoproterozoic, (2) Rhyacian−Orosirian, (3) late Tonian, and (4) Ediacaran−Cambrian. Analysis of zircon Hf isotope data revealed that the first two events are marked by juvenile magmatic signatures, whereas the latter two are distinctly associated with intense reworking and remelting of older crust with no significant juvenile input. Our new results combined with existing data from other Gondwanan terranes suggest a common Paleoproterozoic ancestry for the Southern Granulite terrane and its corresponding Gondwanan fragments, proposing a revision to the existing geodynamic models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call