Abstract

BackgroundThe island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa. The origin of this endemic fauna can be explained by two different factors: vicariance or over-water-dispersal. Deciphering which factor explains the current distributional pattern of a given taxonomic group requires robust phylogenies as well as estimates of divergence times. The lineage of Indian Ocean scops-owls (Otus: Strigidae) includes six or seven species that are endemic to Madagascar and portions of the Comoros and Seychelles archipelagos; little is known about the species limits, biogeographic affinities and relationships to each other. In the present study, using DNA sequence data gathered from six loci, we examine the biogeographic history of the Indian Ocean scops-owls. We also compare the pattern and timing of colonization of the Indian Ocean islands by scops-owls with divergence times already proposed for other bird taxa.ResultsOur analyses revealed that Indian Ocean islands scops-owls do not form a monophyletic assemblage: the Seychelles Otus insularis is genetically closer to the South-East Asian endemic O. sunia than to species from the Comoros and Madagascar. The Pemba Scops-owls O. pembaensis, often considered closely related to, if not conspecific with O. rutilus of Madagascar, is instead closely related to the African mainland O. senegalensis. Relationships among the Indian Ocean taxa from the Comoros and Madagascar are unresolved, despite the analysis of over 4000 bp, suggesting a diversification burst after the initial colonization event. We also highlight one case of putative back-colonization to the Asian mainland from an island ancestor (O. sunia). Our divergence date estimates, using a Bayesian relaxed clock method, suggest that all these events occurred during the last 3.6 myr; albeit colonization of the Indian Ocean islands were not synchronous, O. pembaensis diverged from O. senegalensis about 1.7 mya while species from Madagascar and the Comoro diverged from their continental sister-group about 3.6 mya. We highlight that our estimates coincide with estimates of diversification from other bird lineages.ConclusionOur analyses revealed the occurrence of multiple synchronous colonization events of the Indian Ocean islands by scops-owls, at a time when faunistic exchanges involving Madagascar was common as a result of lowered sea-level that would have allowed the formation of stepping-stone islands. Patterns of diversification that emerged from the scops-owls data are: 1) a star-like pattern concerning the order of colonization of the Indian Ocean islands and 2) the high genetic distinctiveness among all Indian Ocean taxa, reinforcing their recognition as distinct species.

Highlights

  • The island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa

  • As well as traditional taxonomy, it is inferred that most of the Malagasy avifauna originated from African ancestors, colonization events from Eurasia and Australia have been documented for flying organisms such as bats and birds [12,13,14,15,16]

  • Three individuals were found to be length-variant heterozygotes: O. leucotis possesses a CCT duplication in a region with a CCT pattern in all other species, O. rutilus (FMNH 431150) possesses a one base pair deletion (G) in position 171 of the alignment, and O. senegalensis possesses a one base pair insertion (A in position 559 of our alignment; this insertion was found in the two O. pembaensis individuals sequenced)

Read more

Summary

Introduction

The island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa. The origin of this endemic fauna can be explained by two different factors: vicariance or over-water-dispersal. We compare the pattern and timing of colonization of the Indian Ocean islands by scops-owls with divergence times already proposed for other bird taxa. The volcanic Comoros archipelago is of relatively recent age (0–11 mya), the only plausible explanation for the colonization of its biota is by over-ocean dispersal from Africa, Australia, Madagascar or Eurasia. As well as traditional taxonomy, it is inferred that most of the Malagasy avifauna originated from African ancestors, colonization events from Eurasia and Australia have been documented for flying organisms such as bats and birds [12,13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.