Abstract

BackgroundNeem tree serves as a cornucopia for triterpenoids called limonoids that are of profound interest to humans due to their diverse biological activities. However, the biosynthetic pathway that plant employs for the production of limonoids remains unexplored for this wonder tree.ResultsHerein, we report the tracing of limonoid biosynthetic pathway through feeding experiments using 13C isotopologues of glucose in neem cell suspension. Growth and development specific limonoid spectrum of neem seedling and time dependent limonoid biosynthetic characteristics of cell lines were established. Further to understand the role of mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways in limonoid biosynthesis, Ultra Performance Liquid Chromatography (UPLC)- tandem mass spectrometry based structure-fragment relationship developed for limonoids and their isotopologues have been utilized. Analyses of labeled limonoid extract lead to the identification of signature isoprenoid units involved in azadirachtin and other limonoid biosynthesis, which are found to be formed through mevalonate pathway. This was further confirmed by treatment of cell suspension with mevinolin, a specific inhibitor for MVA pathway, which resulted in drastic decrease in limonoid levels whereas their biosynthesis was unaffected with fosmidomycin mediated plastidial methylerythritol 4-phosphate (MEP) pathway inhibition. This was also conspicuous, as the expression level of genes encoding for the rate-limiting enzyme of MVA pathway, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) was comparatively higher to that of deoxyxylulose-phosphate synthase (DXS) of MEP pathway in different tissues and also in the in vitro grown cells. Thus, this study will give a comprehensive understanding of limonoid biosynthetic pathway with differential contribution of MVA and MEP pathways.ConclusionsLimonoid biosynthesis of neem tree and cell lines have been unraveled through comparative quantification of limonoids with that of neem tree and through 13C limonoid isotopologues analysis. The undifferentiated cell lines of neem suspension produced a spectrum of C-seco limonoids, similar to parental tissue, kernel. Azadirachtin, a C-seco limonoid is produced in young tender leaves of plant whereas in the hard mature leaves of tree, ring intact limonoid nimocinol accumulates in high level. Furthermore, mevalonate pathway exclusively contributes for isoprene units of limonoids as evidenced through stable isotope labeling and no complementation of MEP pathway was observed with mevalonate pathway dysfunction, using chemical inhibitors.

Highlights

  • Neem tree serves as a cornucopia for triterpenoids called limonoids that are of profound interest to humans due to their diverse biological activities

  • Limonoid biosynthesis of neem tree and cell lines have been unraveled through comparative quantification of limonoids with that of neem tree and through 13C limonoid isotopologues analysis

  • Mevalonate pathway exclusively contributes for isoprene units of limonoids as evidenced through stable isotope labeling and no complementation of methylerythritol phosphate (MEP) pathway was observed with mevalonate pathway dysfunction, using chemical inhibitors

Read more

Summary

Introduction

Neem tree serves as a cornucopia for triterpenoids called limonoids that are of profound interest to humans due to their diverse biological activities. Various parts of neem tree serves mankind since time immemorial with its bountiful medicinal properties, of these the neem seed has been used widely as a natural insecticide in agricultural practice. Considering the broad-spectrum activity of this marvelous biopesticide, azadirachtin A, several studies have been reported for the optimization of increasing its productivity through cell suspension and hairy root cultures [6, 7]. Characterization of this highly oxygenated, complex molecule was startling in such a way that it paid impetus for the perseverance of the researchers from both biological and chemical fields. Following the determination of correct structure of azadirachtin in 1985 [8], Ley and co-workers achieved the total synthesis of this molecule after two decades of efforts [9, 10]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.