Abstract

A Paleozoic ultrahigh-pressure metamorphic (UHPM) belt extends along the northern margin of the Qaidam Basin, North Tibetan Plateau. Eclogites in the Yuka eclogite terrane, northwest part of this UHPM belt, occur as blocks or layers of varying size intercalated with granitic and pelitic gneisses. These eclogites have protoliths geochemically similar to enriched-type mid-ocean ridge basalts (E-MORB) and oceanic island basalts (OIB). On the basis of Ti/Y ratios, they can be divided into low-Ti and high-Ti groups. The low-Ti group (LTG) eclogites exhibit relatively low TiO 2 (most <2.5 wt%) and Ti/Y (<500) but comparatively high Mg# (48–55), whereas the high-Ti group (HTG) eclogites have high TiO 2 (most >2.5 wt%) and Ti/Y (>500) but lower Mg# (46–52). Zircons from two eclogite samples gave a magmatic crystallization (protolith) age of ∼850 Ma and a UHPM age of ∼433 Ma. The occurrence, geochemical features and age data of the Yuka eclogites suggest that their protoliths are segments of continental flood basalts (CFBs) with a mantle plume origin, similar to most typical CFBs. Our observation, together with the tectonic history and regional geologic context, lend support for the large scale onset of mantle plume within the Rodinia supercontinent at ∼850 Ma. The Qaidam block is probably one of the fragments of the Rodinia supercontinent with a volcanic-rifted passive margin. The latter may have been dragged to mantle depths by its subducting leading edge of the oceanic lithosphere in the Early Paleozoic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call