Abstract

Decades of economic growth in China were enabled by rapid industrialization with insufficient water quality controls. Previous studies have traced water pollution discharges or grey water footprint using the multi-regional input–output (MRIO) model. However, there is a research gap in understanding the relation between surface water pollutant concentrations and final consumption of local and external basins. Here, we present the first national analysis to map surface water quality degradation in watersheds embedded in China’s supply chains. To do this, we developed a basin-specific relationship between surface water pollution concentration and discharge, and combined it with the MRIO model to trace the water pollution of different basins through the trade of products and services. We find that ∼50% chemical oxygen demand (COD) and ∼46% ammonium nitrogen (NH4+-N) discharges from production processes can be traced to consumer demands beyond the basin where the pollution was initially released. 0.3–2.2 mg/L COD and 0.03–0.31 mg/L NH4+-N water quality degradation (the range indicates pollution concentration in different basins) can be attributed to final consumption of commodities from other basins in China. International consumers contributed to increased degradation of water quality (0.43 mg/L COD in Huai River Basin and 0.07 mg/L NH4+-N in Hai River Basin). High pollution concentrations were often concentrated in dry North China, because water scarce basins in this region are more susceptible to human pollution loadings. Basins outsourcing water pollution were mainly developed economies that outsourced production and subsequent water quality impairments to other basins. This study highlights the interactions between water quality and supply chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call