Abstract

A reduced basis technique and a problem-adaptive computational algorithm are presented for predicting the post-limit-point paths of structures. In the proposed approach the structure is discretized by using displacement finite element models. The nodal displacement vector is expressed as a linear combination of a small number of vectors and a Rayleigh-Ritz technique is used to approximate the finite element equations by a small system of nonlinear algebraic equations. To circumvent the difficulties associated with the singularity of the stiffness matrix at limit points, a constraint equation, defining a generalized arc-length in the solution space, is added to the system of nonlinear algebraic equations and the Rayleigh-Ritz approximation functions (or basis vectors) are chosen to consist of a nonlinear solution of the discretized structure and its various order derivatives with respect to the generalized arc-length. The potential of the proposed approach and its advantages over the reduced basis-load control technique are outlined. The effectiveness of the proposed approach is demonstrated by means of numerical examples of structural problems with snap-through and snap-back phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call