Abstract

We show how we used stable nitrogen and oxygen isotopes in ammonium and nitrate to identify and quantify nitrogen transformation and nitrogen sources at the LKAB mining site in northern Sweden. Stable nitrogen isotope analysis worked as an excellent tool for tracing nitrogen cycling in rapidly moving process waters. The isotope analysis was performed on the mining process waters at seven different key points along the water flow and we identified nitrification, ammonia volatilisation, and ammonium adsorption as nitrogen transformation processes. The source of nitrogen is historically explained as undetonated ammonium-nitrate based explosives. We used nitrate nitrogen and oxygen isotopes to quantify four nitrogen sources in the accumulated water in the mine as well as three sources in an above ground process water reservoir. The nitrate isotope data showed that most of the nitrate (70–80%) in the accumulated water underground originated from a sampling point located close to the surface and only a minor fraction (5–20%) originated directly from undetonated explosives (direct dissolution of NH4NO3 and nitrification of NH4). Nitrate from natural groundwater formed roughly 12% of mine water nitrate. In the above ground process water reservoir isotope data indicated another source of nitrogen coming from undetonated explosives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.