Abstract

The growth of anodic coatings on titanium, under sparking conditions, is investigated in tracer experiments, using alkaline silicate and phosphate electrolytes. Coatings are formed sequentially in each electrolyte, with phosphorus and silicon located by energy-dispersive X-ray analysis and glow discharge optical emission spectroscopy. The coatings, containing anatase, rutile and amorphous oxide, with incorporated phosphorus and silicon species, are shown to grow by discrete thickening at sites of dielectric breakdown. New material is found near the metal, within the coating bulk and at the coating surface. Approximately 10–30% of the new material is located near to the coating surface and about 40–60% near to the metal. The findings are attributed to the formation of breakdown channels allowing access of electrolyte species to the inner parts of the coating and to subsequent rapid formation of coating material, under high temperatures, associated with increased local current density, and high pressures, associated with volume constraints on oxide growth and gas generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.