Abstract

The present study examined the efficiency of fluorescent carbocyanine dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylinodocarbocyanine perchlorate and cholera toxin B subunit in tracing the crossed tectal projection to the nucleus rotundus of the thalamus (tectorotundal pathways) of paraformaldehyde-fixed and living chick embryos. The tracers were injected into the optic tectum under three experimental conditions (carbocyanine postfix, carbocyanine in vivo, and cholera toxin B subunit in vivo) and the anterograde transport of the nucleus rotundus was monitored and compared. In the carbocyanine postfix method, small crystals of carbocyanine dye were inserted into the tectum of paraformaldehyde-fixed embryos. A 6-month post-insertion period was required to label the crossed tectorotundal pathway. Results showed that tectal neurons did not begin to innervate the ipsilateral nucleus rotundus until embryonic day 9 and the contralateral nucleus rotundus until embryonic day 17. This slow progression of labeling through the crossed tectal projection resulted in significant contrast of the labeling between the ipsilateral and contralateral nuclei rotundus. In the carbocyanine in vivo method, a small volume of carbocyanine dye solution was injected into the tectum of living embryos. A 8- to 12-h survival period was sufficient enough to label the tectorotundal pathway. By embryonic day 8, the labeled axons terminated in the ipsilateral nucleus rotundus and the crossed tectorotundal projection was first detected by embryonic day 10. Similarly, in the cholera toxin B subunit in vivo method, a small volume of cholera toxin B subunit solution was injected into the tectum of living embryos. After a 6- to 10-h survival period, heavily labeled axons were found to innervate bilaterally the nucleus rotundus by embryonic day 8. This appeared to be the earliest schedule for detecting the crossed tectorotundal projection, compared with that of both the postfix and in vivo methods of carbocyanine dye. Based on the differences in the detectability of the crossed tectorotundal projection between the postfix and in vivo methods, the present data suggest that the former method is of limited purpose for labeling tectal collaterals during embryogenesis. Moreover, given the rapid transport rate and absence of photobleaching, which is often seen when using carbocyanine dye, the cholera toxin B subunit in vivo method appears to be the tracer of choice for investigating embryonic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.