Abstract

Gamma-ray binaries emit most of their radiated power beyond ~10 MeV. The non-thermal emission is thought to arise from the interaction of the relativistic wind of a rotation-powered pulsar with the stellar wind of its massive (O or Be) companion star. A powerful pulsar creates an extended cavity, filled with relativistic electrons, in the radiatively-driven wind of the massive star. As a result, the observed P Cyg profiles of UV resonant lines from the stellar wind should be different from those of single massive stars. We propose to use UV emission lines to detect and constrain the colliding wind region in gamma-ray binaries. We compute the expected orbital variability of P Cyg profiles depending upon the interaction geometry (set by the ratio of momentum fluxes from the winds) and the line-of-sight to the system. We predict little or no variability for the case of LS 5039 and PSR B1259-63, in agreement with currently available HST observations of LS 5039. However, variability between superior and inferior conjunction is expected in the case of LS I+61 303.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.