7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1088/0004-637x/757/1/84
Copy DOIJournal: The Astrophysical Journal | Publication Date: Sep 6, 2012 |
Citations: 34 |
We analyze line-of-sight atomic hydrogen (HI) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array - ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The HI Nearby Galaxy Survey (THINGS) to trace regions containing cold (T $\lesssim$ 1400 K) HI from observations with a uniform linear scale of 200 pc/beam. Our galaxy sample spans four orders of magnitude in total HI mass and nine magnitudes in M_B. We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low dispersion (<6 km/s) component of the spectrum. Most HI spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km/s. Cold HI is found in 23 of 27 (~85%) galaxies after a reduction of the sample size due to quality control cuts. The cold HI contributes ~20% of the total line-of-sight flux when found with warm HI. Spectra best fit by a single Gaussian, but dominated by cold HI emission (i.e., have velocity dispersions <6 km/s) are found primarily beyond the optical radius of the host galaxy. The cold HI is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global HI distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total HI gas of only a few percent in each galaxy.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.