Abstract

Crystallization processes under different conditions are of fundamental interest in chemistry, pharmacy, and medicine. Therefore, we have studied the formation of micro- and nanosized crystals using water-caffeine (1,3,7-trimethyl-1 H-purine-2,6(3 H,7 H)-dione) solutions under ambient conditions as a relevant model system. When droplets of an aqueous caffeine solution evaporate and eventually dry on surfaces (glass, polystyrene, and polyester), stable "coffee tabletop" rings with a perimeter of typically 3 mm are formed after 20 to 50 min. Using a micro focus X-ray beam available at the BESSY muSpot-beamline, the fine structure of different caffeine needles can be distinguished. Unexpectedly, both crystal modifications (alpha- and beta-caffeine) are present, but locally separated in these rings. Furthermore, AFM studies reveal the presence of even smaller particles on a nanometer length scale. To eliminate influences of surface irregularities from the crystallization process, acoustic levitation of liquid samples was employed. Such levitated droplets are trapped in a stable position and only surrounded by air. The solvent in an ultrasonically levitated drop evaporates completely, and the resulting crystallization of caffeine was followed in situ by synchrotron X-ray diffraction. In this case, the diffraction pattern is in accordance with pure alpha-caffeine and does not indicate the formation of the room temperature polymorph beta-caffeine. Hence, our investigations open new vistas that may lead to a controlled formation of cocrystals and novel polymorphs of micro- and nanocrystalline materials, which are of relevance for fundamental studies as well as for pharmaceutical and medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call