Abstract

Historic coal gangue stacking probably brings heavy metals (HMs) into the surrounding agricultural soil, posing potential harm to human and environmental health. For better controlling and preventing agricultural soil HMs pollution, the screening of priority pollutants and identification of their pollution pathways are urgent in coal gangue stacking areas. Thus, this study selected a coal gangue stacking area in Chongqing, China as the research object and conducted the pollution evaluation, spatial distribution and source apportionment of the HMs (Cd, Cr, Ni, Cu, Zn, As, Pb and Hg) in surrounding agricultural soil. Results showed that the soil was moderately to heavily contaminated by Cd with average concentrations of 1.23 mg/kg, which were 4.1 times higher than the Environmental Quality Standards for Soils of China. Cd was considered as the soil precedent-controlled pollutant in this study area and subsequent soil δ114/110Cd values indicated that Cd in surface soils primarily originated from the leachate of coal gangue stacking, which contributed about 89.9 % and 85.47 % to the total soil Cd according to the absolute principal component scores-multiple linear regression model (APCS-MLR) and positive matrix factorization model (PMF), respectively. In addition, other HMs mainly resulted from the leachate of coal gangue, natural and agricultural mixed pollution as well as traffic pollution. Therefore, this study provided basic information for pollution control of the HMs in agricultural soil in the coal gangue stacking area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.