Abstract

Protein evolution is a process of molecular design leading to the diversity of functional proteins found in nature. Recent advances in bioinformatics and structural biology, in addition to recombinant protein expression techniques, enable us to analyze more directly the molecular evolution of proteins by a new method using ancestral sequence reconstruction (ASR), the so-called experimental molecular archaeology. ASR has been used to reveal molecular properties and structures correlating with changing geology, ecology, and physiology, and to identify the structure elements important to changing physiological functions to fill substantial gaps in the processes of protein evolution. In this chapter, we describe ASR as a new method of protein engineering studies, and their application to analyzing lectins, of which evolutionary processes and structural features contributing to molecular stability, specificity, and unique functions have been elucidated. Experimental molecular archeology using ASR and crystal structures of full-length ancestral proteins is useful in understanding the evolutionary process of the functional and structural diversified lectins by tracing ancestral specificities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call