Abstract

Tracheal blood flow increases greater than twofold in response to eucapnic hyperventilation of dry gas in anesthetized sheep. To determine whether this occurs at normal minute ventilation, we studied sheep in which tracheal blood flow was measured in response to humid and dry gas ventilation while 1) awake and spontaneously breathing and 2) anesthetized and intubated during isocapnic mechanical ventilation. In additional sheep, three tracheal mucosal temperatures were measured during humid and dry gas mechanical ventilation to measure airway tissue cooling. Tracheal blood flow was determined by use of a left atrial injection of 15-microns-diam radiolabeled microspheres. Previously implanted flow probes on the pulmonary artery and the common bronchial artery allowed continuous recording of cardiac output and bronchial blood flow. Tracheal blood flow in awake spontaneously breathing sheep was 10.8 +/- 5.6 (SD) ml.min-1.100 g wet wt-1 while humid gas was breathed, and it was unchanged with dry gas. In contrast, isocapnic ventilation of intubated animals with dry gas resulted in a 10-fold increase in blood flow to the most proximal two-ring tracheal segment compared with that seen while humid gases were spontaneously ventilated [101 +/- 75 vs. 11 +/- 6 (SD) ml.min-1.100 g-1, P less than 0.05]. Despite a 10-fold increase in proximal tracheal blood flow, there was no response in distal tracheal and bronchial blood flow, as indicated by no change in the common bronchial artery blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call