Abstract

Today, tracheal lesions occupying<30%of the trachea in children and<50%in adults can be treated with primary resection, followed by end-to-end anastomosis. However, lesions larger than this require a tracheal replacement, of which there are currently few options available. The recent advancement of tissue-engineering principles in tracheal research is quickly opening up new vistas for airway reconstruction and creating a very promising future for medical science. This review discusses the main criteria required for the development of a tissue-engineered tracheal replacement. The criteria include: (a) appropriate cell types and sources; (b) biomolecules to direct the differentiation of the cells to the desired lineage; (c) a suitable scaffold for a cellular matrix; and (d) a bioreactor to facilitate cell attachment and proliferation and construct transport to theatre. Our group has designed and developed the world’s first synthetic tracheal replacement, using a novel nanocomposite material, also developed in our laboratory. It was implanted clinically in June 2011 with a successful outcome. The application of tissue-engineering approaches to tracheal replacement development is the first step towards the much-anticipated ‘off-the-shelf’ tissue-engineered technology, contributing extensively to the advancement in treatment and rehabilitation of patients afflicted with tracheal pathology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.