Abstract

Controlling the size and morphology of metal-organic frameworks (MOF) has received increasing research interest but remains a great challenge. In this work, we demonstrate a trace-water-induced competitive coordination procedure to controllably synthesize porphyrinic MOFs including needle-shaped nanomaterials, hollow nanotubes, and nanocubes, using 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin as organic linkers and Zr4+ as inorganic building blocks. These three MOFs exhibited shape-dependent singlet oxygen (1O2) production under 655 nm laser irradiation. The designed nanocubes were functionalized by coating a MnO2 shell, which can effectively generate 1O2 in the tumor microenvironment (TME) to improve photodynamic therapy (PDT). Moreover, they reacted with GSH, and the resulted Mn2+ions generated hydroxyl radicals (·OH) for chemodynamic therapy (CDT). Therefore, the designed MOFs@MnO2 nanoparticles were responsive to the hypoxic TME to improve the efficiency of PDT and incorporate CDT for tumor ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call