Abstract
At short gate lengths, narrow multiple-gate FETs (MuGFETs) are known to offer superior short channel effect (SCE) control than their bulk Si counterpart [Doyle BS et al. High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Dev Lett 2003;24(4):263–5, van Dal MJH et al. Highly manufacturable FinFETs with sub-10 nm fin width and high aspect ratio fabricated with immersion lithography. In: VLSI Symp Tech Dig; 2007. p. 110–1 [1], [2]]. In addition, their undoped channels allow a substantial reduction of the threshold voltage (VT) mismatch, which makes the MuGFET an excellent candidate for replacing planar MOSFETs in SRAM structures. However, as the Si fin width (Wfin) and gate length (Lg) are down-scaled in order to improve the SCE control and current drive, respectively, the gate work function and access resistance (RSD) engineering become more challenging.In this paper, two approaches for optimizing the performance of narrow MuGFETs are reported and analysed: the first one relies on the thickness of their Plasma-Enhanced-ALD (PE-ALD) TiN gate electrode. It is demonstrated that very thin PE-ALD TiN gate electrodes allow improved SCE control and enhanced performance in nMOS MuGFETs. The second approach relies on non-amorphizing ion (boron) implantations for both extension and HDD implantations. A substantial RSD reduction is demonstrated for pMOS MuGFETs with Si fin widths down to 10 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.