Abstract

The Calkin theorem provides a one-to-one correspondence between all operator ideals A(H) over the separable infinite-dimensional Hilbert space H and all symmetric sequence ideals a(N) over the index set N≔{1,2,…}.The main idea of the present paper is to replace a(N) by the ideal z(N0) that consists of all sequences (αh) indexed by N0≔{0,1,2,…} for which (α0,α1,α1,…,αh,…,αh︷2hterms,…)∈a(N). This new kind of sequence ideals is characterized by two properties: (1)For (αh)∈z(N0) there is a non-increasing (βh)∈z(N0) such that ∣αh∣≤βh.(2)z(N0) is invariant under the operator S+:(α0,α1,α2,…)↦(0,α0,α1,…). Using this modification of the Calkin theorem, we simplify, unify, and complete earlier results of [4,5,7–9,13,14,19–21,25]The central theorem says that there are canonical isomorphisms between the linear spaces of all traces on A(H), all symmetric linear forms on a(N), and all 12S+-invariant linear forms on z(N0).In this way, the theory of linear forms on ideals of a non-commutative algebra that are invariant under the members of a non-commutative group is reduced to the theory of linear forms on ideals of a commutative algebra that are invariant under a single operator. It is hoped that the present approach deserves the rating “streamlined”.Our main objects are linear forms in the purely algebraic sense. Only at the end of this paper continuity comes into play, when the case of quasi-normed ideals is considered. We also sketch a classification of operator ideals according to the existence of various kinds of traces. Details will be discussed in a subsequent publication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call