Abstract

A variant of the trace in a monoidal category is given in the setting of closed monoidal derivators, which is applicable to endomorphisms of fiberwise dualizable objects. Functoriality of this trace is established. As an application, an explicit formula is deduced for the trace of the homotopy colimit of endomorphisms over finite categories in which all endomorphisms are invertible. This result can be seen as a generalization of the additivity of traces in monoidal categories with a compatible triangulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.