Abstract

AbstractLost circulation, the inadvertent injection of drilling fluids into a highly permeable and/or fractured aquifer during rotary drilling, may result in collection of spurious information if the lost drilling fluids are not adequately purged before sampling the ground water. The purpose of this study was to determine whether removal of the volume of water lost during coring of a monitoring well in the carbonate Scotch Grove Formation (Silurian, east central Iowa) necessarily ensures collection of representative ground water samples. To monitor dilution of the ground water due to lost circulation, rhodamine dye was added to the drilling water and dye recovery was measured in samples collected during purging of five separate 5‐ to 10‐foot intervals.Circulation loss occurred in all five intervals, ranging from nearly 200 gallons in the upper permeable portion of the Scotch Grove to 25 gallons in the less permeable Buck Creek Member below. When the volume of water purged from the upper three intervals corresponded to the volume of water lost during coring, the purge water still contained 11 to 20 percent dyed drilling water. As purging continued, the proportion of drilling water in the samples decreased slowly. After purging more than 200 gallons of water, 86 to 98 percent of the dyed drilling water was recovered from the five test intervals. Four traditionally measured water quality parameters‐pH, temperature, specific conductance, and dissolved oxygen — were less useful than the dye recovery for distinguishing drilling water from formation water in those zones in which the ground water quality was similar to the drilling water. These results indicate that the determination of the quantity of water to be purged prior to sampling must be based, at least in part, on aquifer lithology and hydraulic characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.