Abstract

Mitigating anomalies are crucial for trajectory management in logistics and supply chain systems. Among variant devices for trace detection, computational radio frequency identification (CRFID) tags are promising to draw precise trajectory from the data reported by their accelerometers. However, full coverage of the processing flow using RFID readers is usually cost inefficient, sometimes impractical. In this paper, we propose to employ CRFID tags as tagging devices and develop a working system, Tracer, for precise trajectory detection. Instead of covering the entire processing area, Tracer only deploys RFID readers in essential regions to detect the mishandling, loss, and other abnormal states of items. We design a tree-indexed Markov chain framework, which leverages statistical methods to enable fine-grained and dynamic trajectory management. Results from a preliminarily deployment on a real baggage handling system and trace-driven simulations demonstrate that Tracer is effective to detect the anomalous events with low cost and high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.