Abstract

AbstractTime sequences of tracer release from an alpine snowpack were investigated at Mammoth Mountain, California in 1989. Lysimeter discharge and conductivity were recorded at 30 minute intervals. Three separate applications of chemical tracers were added to the snow surface to provide an ionic signal with known origins in the snowpack. Grab samples of meltwater and snow from snow pits were analysed for chemical composition. There were three distinct discharge periods, each characterized by diurnal fluctuations in discharge and conductivity. An inverse relation between discharge and conductivity was interpreted as the combination of a concentrated signal from regions in the pack less subject to leaching and a relatively dilute signal from near the snow surface where the snow was actively melting Conductivity peaks were highest and diurnal changes greatest immediately following periods of freezing. Grab samples showed little correlation with either 30 minute or daily average conductivity. Relative concentrations of individual ions in meltwater were similar between samples. Non‐systematic grab sampling of snowpack meltwater is shown to be potentially misleading because of multiple ionic pulses over the ablation season and strong diurnal fluctuations in chemical concentrations. Continuous measurements of discharge conductivity are a good indicator of diurnal and seasonal changes in the rate of ion release from the snowpack, and should be used to guide sampling. Composite, or time‐integrated samples rather than grab samples may be required to estimate daily and weekly rates of ion release in melting snow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.