Abstract

The separation of liquid phase and vapor phase laser-induced fluorescence (LIF) signals using tracer species suffers from uncertainties in tracer-fuel coevaporation, as well as a disparity in liquid and vapor signals. This work demonstrates the use of a simple technique, referred to as lifetime-filtered LIF, to help separate the liquid and vapor signals of fuel sprays in oxygen-free environments without the use of added tracers. This is demonstrated for a common aviation fuel, Jet-A, using prompt detection of the liquid phase and time-delayed detection of the vapor phase. A scaled liquid signal subtraction algorithm is also demonstrated for removing vapor phase signal contamination caused by the largest droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.