Abstract

We address the problem of code search in executables. Given a function in binary form and a large code base, our goal is to statically find similar functions in the code base. Towards this end, we present a novel technique for computing similarity between functions. Our notion of similarity is based on decomposition of functions into tracelets: continuous, short, partial traces of an execution. To establish tracelet similarity in the face of low-level compiler transformations, we employ a simple rewriting engine. This engine uses constraint solving over alignment constraints and data dependencies to match registers and memory addresses between tracelets, bridging the gap between tracelets that are otherwise similar. We have implemented our approach and applied it to find matches in over a million binary functions. We compare tracelet matching to approaches based on n-grams and graphlets and show that tracelet matching obtains dramatically better precision and recall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.