Abstract

State-of-the-art dynamic compilers often use global approaches, like Linear Scan or Graph Coloring, for register allocation. These algorithms consider the complete compilation unit for allocation, which increases the complexity of the implementation (e.g., support for lifetime holes in Linear Scan) and potentially also affects compilation time. We propose a novel non-global algorithm, which splits a compilation unit into traces based on profiling feedback and subsequently performs register allocation within each trace individually. Traces reduce the problem size to a single linear code segment, which simplifies the problem a register allocator needs to solve. Additionally, we can apply different register allocation algorithms to each trace. We show that this non-global approach can achieve results competitive to global register allocation.We present an implementation of Trace Register Allocation based on the Graal VM and show an evaluation for common Java benchmarks. We demonstrate that performance of this non-global approach is within 3% (on AMD64) and 1% (on SPARC) of global Linear Scan register allocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.