Abstract
In virtual reality, point-and-teleport (P&T) is a locomotion technique that is popular for its user-friendliness, lowering workload and mitigating cybersickness. However, most P&T schemes use instantaneous transitions, which has been known to hinder spatial learning. While replacing instantaneous transitions with animated interpolations can address this issue, they may inadvertently induce cybersickness. To counter these deficiencies, we propose Traceable Teleportation (TTP), an enhanced locomotion technique grounded in a theoretical framework that was designed to improve spatial learning. TTP incorporates two novel features: an Undo-Redo mechanism that facilitates rapid back-and-forth movements, and a Visualized Path that offers additional visual cues. We have conducted a user study via a set of spatial learning tests within a virtual labyrinth to assess the effect of these enhancements on the P&T technique. Our findings indicate that the TTP Undo-Redo design generally facilitates the learning of orientational spatial knowledge without incurring additional cybersickness or diminishing sense of presence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.