Abstract
Traceable ring signature (TRS), a variant of ring signature, allows a signer to sign a message anonymously labeled with a tag on behalf of a group of users, but may reveal the signer’s identity if he creates two signatures with the same tag. TRS provides accountable anonymity for users, and serves as an important role in e-voting systems and e-coupon services. However, current TRS schemes are built on hard problems in number theory that cannot resist quantum attackers. To address this issue, first, we propose a general framework of TRS, by using a non-interactive zero-knowledge proof of knowledge, a hash family, and a pseudorandom function with some additional properties. Then, by instantiating our framework, we give two concrete efficient TRS schemes from lattices and symmetric-key primitives respectively, and both of them are proven to be secure in the quantum random oracle model. Moreover, both schemes have logarithmic signature size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.