Abstract

Dimensional measurements of multi-patterned transmission gratings with a mixture of long and small periods are great challenges for optical metrology today. It is a further challenge when the aspect ratio of the structures is high, that is, when the height of structures is larger than the pitch. Here we consider a double patterned transmission grating with pitches of 500nm and 20 000nm. For measuring the geometrical properties of double patterned transmission grating we use a combined spectroscopic Mueller polarimetry and scatterometry setup. For modelling the experimentally obtained data we rigorously compute the scattering signal by solving Maxwell's equations using the RCWA method on a supercell structure. We also present a new method for analyzing the Mueller polarimetry parameters that performs the analysis in the measured variables. This new inversion method for finding the best fit between measured and calculated values are tested on silicon gratings with periods from 300 to 600nm. The method is shown to give results within the expanded uncertainty of reference AFM measurements. The application of the new inversion method and the supercell structure to the double patterned transmission grating gives best estimates of dimensional quantities that are in fair agreement with those derived from local AFM measurements

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.