Abstract
Composts are increasingly used as environmentally safe biofertilizers in sustainable agriculture all over the world. Although it is well known that composts may contribute to soil vitality and sustainability, and in the enhancement of various soil microbiological processes, little is known about their direct or indirect effects on a microbial-community or population level. Ammonia oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and plays an important role in the global nitrogen cycle. Here, we studied the diversity and community composition of ammonia oxidizers in a long-term crop rotation field experiment (>10 years) where four major types of compost (from organic waste, cattle manure, green waste and sewage sludge) had been applied annually. The methods used ranged from PCR-DGGE (denaturing gradient gel electrophoresis) and cloning of 16S rDNA fragments to quantitative real-time PCR. Cluster analysis of DGGE profiles differentiated between the microbial communities of composts, compost-treated soils and mineral-fertilized soils. The community composition of the composts was not reflected in the community composition of the compost-treated soils. Sequencing of screened clones revealed a characteristic AOB community structure for the representative soil sample and the four composts. All AOB-like sequences grouped within the Nitrosospira cluster 3 and 4 and within the Nitrosomonas cluster 6 and 7. The average AOB abundance in compost-treated soils was two times higher than in mineral-fertilized soils (4.3×10 7 and 1.9×10 7, respectively). Our data suggest that composts do not leave direct microbial imprints in soils after long-term amendment, but an indirect effect on the AOB community was evident.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.