Abstract
As the popularity of online travel platforms increases, users tend to make ad-hoc decisions on places to visit rather than preparing the detailed tour plans in advance. Under the situation of timeliness and uncertainty of users’ demand, how to integrate real-time context into dynamic and personalized recommendations have become a key issue in travel recommender system. In this article, by integrating the users’ historical preferences and real-time context, a location-aware recommender system called TRACE ( T ravel R einforcement Recommendations Based on Location- A ware C ontext E xtraction) is proposed. It captures users’ features based on location-aware context learning model, and makes dynamic recommendations based on reinforcement learning. Specifically, this research: (1) designs a travel reinforcing recommender system based on an Actor-Critic framework, which can dynamically track the user preference shifts and optimize the recommender system performance; (2) proposes a location-aware context learning model, which aims at extracting user context from real-time location and then calculating the impacts of nearby attractions on users’ preferences; and (3) conducts both offline and online experiments. Our proposed model achieves the best performance in both of the two experiments, which demonstrates that tracking the users’ preference shifts based on real-time location is valuable for improving the recommendation results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.