Abstract
Spatial distribution of selected contaminants in the surface sediments of Santa Monica Bay (SMB), California was investigated. Sediments were analyzed for DDTs (DDT and metabolites), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), linear alkylbenzenes (LABs) and coprostanol. Effluent samples from the Hyperion Treatment Plant (HTP), which discharges treated municipal wastewater effluents into SMB, were also analyzed. The inter-correlation in the distribution trends of contaminants was examined. The concentrations of contaminants were interpolated in a geographic information system to visualize their spatial distribution in the Bay. Inventories of the contaminants were also estimated. The concentrations of coprostanol, LABs and PCBs are very high only in the vicinity of the sewage outfall whereas PAHs and DDTs occur widespread in the Bay. The poor correlation of DDTs with LABs, PAHs or coprostanol content confirms the historic origin of DDTs and their absence in the contemporary wastewaters. Moderate correlation of DDTs with PCBs implies historic deposits as a major origin of PCBs. There are hot spots of DDTs at water depths of 60 and 100m and the inventory of DDTs in Bay sediments is insignificant compared to that estimated in the Palos Verdes Shelf which extends from the southern edge of Redondo Canyon around Palos Verdes Peninsula. The concentration of toxic contaminants was examined according to published sediment quality guidelines. About 20 stations contain p, p'-DDE and/or total DDTs above ERM and, PCBs between ERL and ERM indicating potential for adverse biological effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.