Abstract

The distribution and controls of trace elements (Cd, Cr, Cu, Ni, Pb, Zn and U) in shallow groundwater in discharge and recharge zones were analysed at two sites on the Baltic coast of Sweden; one granite-dominated and one with a significant addition of calcite. Although the study sites differ in overburden geochemistry and groundwater trace metal concentrations, which were well reflected in the general groundwater composition, the relative hydrochemical differences between recharge and discharge ground waters were similar at both sites, and temporally stable. The concentrations of Cd, Cu, Ni and U were higher in soil tubes in recharge areas, but Cr was higher in discharge zones. Also concentrations of HS, Fe, Mn and NH4 were higher in discharge samples, which in combination with increased 34S values provide strong evidence of a transition from oxidizing to more reducing conditions along the groundwater flow gradient. In terms of trace metals, this might mean either mobilisation due to dissolution of trace-metal carrying Fe(III) and Mn(IV) phases, or immobilisation caused by precipitation of discrete trace-metal sulfides or co-precipitation with Fe sulfides. The results from this study show that the latter is dominant in both the carbonate and granite environments for the metals Cd, Cu and Ni. Chromium concentrations were likely coupled to organic complexation and were higher in discharge groundwater, where DOC was also more abundant. As the concentration of several potentially toxic trace metals were found to differ between recharge and discharge areas, a climate driven change in hydrology might have a substantial impact on the distribution of these metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.