Abstract

The distribution and enrichment of selected trace metals (Cd, Cr, Cu, Ni, Pb, Sn, Zn) in benthic sediments of the Southport Broadwater, a semi-enclosed coastal body of water adjacent to the Gold Coast city, south-eastern Queensland, Australia, was studied with the objective of assessing the extent and degree of sediment contamination. Sediment samples from the 0-10 cm and 10-20 cm depth intervals of 32 sites within the Southport Broadwater and surrounding residential canals were analysed for particle size distribution, pH, organic C and 'near-total' major (Al, Ca, Fe, Mn) and trace (Cd, Cr, Cu, Ni, Pb, Sn, Zn) metal contents. Sediment contamination for each trace metal was assessed by (1) comparison with Australian sediment quality guidelines, (2) calculation of the index of geoaccumulation based on regional background values, and (3) geochemical normalisation against Al (i.e. the abundance of alumino-silicate clay minerals). Based on this approach, the results indicate that submerged sediments in the study area are not presently enriched with Cd, Cr or Ni, with the spatial distribution of these metals being very well explained by the abundance of alumino-silicate clay minerals. However, several sites were strongly enriched with Cu, Pb, Sn and Zn, arising from sources related to either urban runoff or vessel maintenance activities. The study indicates that several varying approaches are needed for a satisfactory assessment of contaminant enrichment in estuarine sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.