Abstract
Trace-metal contamination poses a threat to performance and stability of proton exchange membrane fuel cells (PEMFCs). In this study the source of origin and degree of metal dissolution from carbon-coated 316L bipolar plates (BPPs) are evaluated after a long-term PEMFC test run under conditions resembling a real-life automotive application. Despite intact carbon-coating, metal dissolution occurs from uncoated oxycarbide stains on the plates’ surface. Which correlates with post-mortem detection of chromium, iron and nickel in the membrane electrode assembly. The rate of cell voltage decrease throughout the high current operations is found to be twice as high in the presence of metal ions. Metal dissolution can be correlated with transients in cell voltage during dynamic current load cycling as a result of temporary global fuel starvation. The observed difference in metal dissolution on the anode and cathode BPP indicates weak galvanic coupling between the bipolar plate(s) and the electrode layer(s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.