Abstract
Nile crocodiles (Crocodylus niloticus) at Lake St Lucia, South Africa, have some of the highest blood lead (Pb) concentrations ever recorded in wildlife globally. Although exposure to Pb is known to pose major risks to wildlife reproductive success, potential impacts on crocodile reproduction at Lake St Lucia have yet to be examined. In this study, we investigated the accumulation of Pb and other trace metals (Al, V, Cr, Co, Cu, Ni, Zn and Cd) in eggs (n = 20) collected from five wild crocodile nests at Lake St Lucia. All metals analysed in this study were detected in egg contents, although concentrations varied considerably among nests and within clutches. Lead was detected in the contents of all eggs, but only at relatively low concentrations (43 ± 26ngg-1 dry weight). Although sampling limitations commonly associated with wild population surveys prevent a complete assessment of exposure variability, our findings suggest maternal transfer may not be a significant depuration pathway for Pb and females possibly clear Pb through other mechanisms (e.g. sequestration into claws, bone and osteoderms). Metal concentrations in eggshells and shell membranes were poorly correlated with concentrations measured in egg content and thus do not provide viable non-lethal indicators for monitoring metal exposure in Nile crocodiles. Intra-clutch variability accounted for a considerable proportion of the total variance in egg content metal concentrations, suggesting the "one egg" sampling strategy often applied in reptile studies may not be an effective biomonitoring tool for wild crocodilian populations. Although maternally derived Pb does not appear to present widespread toxicological concern at Lake St Lucia, adverse effects of Pb exposure on other reproductive functions (e.g. spermatogenesis) cannot be discounted and warrant further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives of environmental contamination and toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.