Abstract
Let G be a finite group and R be a commutative ring. The Mackey algebra μR(G) shares a lot of properties with the group algebra RG however, there are some differences. For example, the group algebra is a symmetric algebra and this is not always the case for the Mackey algebra. In this paper we present a systematic approach to the question of the symmetry of the Mackey algebra, by producing symmetric associative bilinear forms for the Mackey algebra.Using the fact that the category of Mackey functors is a closed symmetric monoidal category, we prove that the Mackey algebra μR(G) is a symmetric algebra if and only if the family of Burnside algebras (RB(H))H⩽G is a family of symmetric algebras with a compatibility condition.As a corollary, we recover the well known fact that over a field of characteristic zero, the Mackey algebra is always symmetric. Over the ring of integers the Mackey algebra of G is symmetric if and only if the order of G is square free. Finally, if (K,O,k) is a p-modular system for G, we show that the Mackey algebras μO(G) and μk(G) are symmetric if and only if the Sylow p-subgroups of G are of order 1 or p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.