Abstract
Carbon materials are frequently used as supports for electrocatalysts because they are conductive and have high surface area. However, recent studies have shown that these materials can contain significant levels of metallic impurities that can dramatically alter their electrochemical properties. Here, the electrocatalytic activity of pure graphite (PG), graphene oxide (GO), and carbon nanotubes (CNT) dispersed on glassy carbon (GC) are investigated for the electrochemical CO2 reduction reaction (CO2RR) in aqueous solution. It was observed that GO and CNT dispersed on GC all exhibit significant electrochemical activity that can be ascribed to impurities of Ni, Fe, Mn, and Cu. The level of Cu in GO can be particularly high and is the cause for the appearance of methane in the products produced over this material when it is used for the CO2RR. Washing these supports in ultrapure nitric acid is effective in removing the metal impurities and results in a reduction in the electrochemical activity of these form...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.