Abstract

Phosphate as one of the most essential components of living systems, robust analytical techniques available for phosphate sensing in natural waters and soils are essential for monitoring and predicting water quality and agronomic evaluation of phosphate. Using cyclic voltammetry, a point-of-use electrochemical sensor zirconium dioxide/zinc oxide/multiple-wall carbon nanotubes/ammonium molybdate tetrahydrate/screen printed electrode (ZrO2/ZnO/MWCNTs/AMT/SPE) was applied to explore the electro-redox reaction of phosphomolybdate complexes on the surface of electrode, which produced a quantitative electrochemical response of phosphate anions. The modification of the electrode surface with ZrO2/ZnO/MWCNTs nanocomposites is able to generate the electroactive species via chemical reaction between molybdenum (Mo(VI)) and the targeted phosphate anions, leading to a sensitive detection technique for trace phosphate with a lower detection limit (LOD = 2.0 × 10-8 mol L-1), higher reproducibility, anti-interference, and precision in different soil sources. This system will be of great potential to advance the trace-level understanding of phosphate especially in field environmental analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.