Abstract
One-counter nets ( OCN) consist of a nondeterministic finite control and a single integer counter that cannot be fully tested for zero. They form a natural subclass of both One-Counter Automata, which allow zero-tests and Petri Nets/VASS, which allow multiple such weak counters. The trace inclusion problem has recently been shown to be undecidable for OCN. In this paper, we contrast the complexity of two natural restrictions which imply decidability.We show that trace inclusion between a OCN and a deterministic OCN is NL-complete, even with arbitrary binary-encoded initial counter-values as part of the input. Secondly, we show that the trace universality problem of nondeterministic OCN, which is equivalent to checking trace inclusion between a finite system and a OCN-process, is Ackermann-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.