Abstract

Trace gas detection of small molecules has been performed with cavity ring down (CRD) absorption spectroscopy in the near UV part of the spectrum. The absolute concentration of the OH radical present in trace amounts in heated plain air due to thermal dissociation of H2O has been calibrated as a function of temperature in the 720–1125 °C range. Detection of NH3 at the 10 ppb level is demonstrated in calibrated NH3/air flows. Detection of the background Hg concentration in plain air is performed with a current detection limit below 1 ppt. The effect of the laser linewidth in relation to the width of the absorption line is discussed in detail. Basic considerations regarding the use of CRD for trace gas detection are given and it is concluded that CRD spectroscopy holds great promise for sensitive [(sub)-ppb] and fast (kHz) detection of many small molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.