Abstract

Explosives are often used in industry, geology, mining, and other applications, but it is not always clear what remains after a detonation or the fate and transport of any residual material. The goal of this study was to determine to what extent intact molecules of high explosive (HE) compounds are detectable and quantifiable from post-detonation dust and particulates in a field experiment with varied topography. We focused on HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazocane), which is less studied in field detonation literature, as the primary explosive material and RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) as the secondary material. The experiment was conducted at Site 300, Lawrence Livermore National Laboratory's Experimental Test Site, in California, USA. Two 20.4 kg and one 40.8 kg above ground explosions (primarily comprised of LX-14, an HMX-based polymer-bonded high explosive) were detonated on an open-air firing area on separate days. The complex terrain of the firing area (e.g., buildings, berm, low-height obstacles) was advantageous to study HE deposition in relation to plume dynamics.Three types of samples were collected up to 100 m away from each shot: surface swipes of aluminum plates, surface swipes of fixed objects, and filters from air samples. We used atmospheric flow tube-mass spectrometry (AFT-MS) to quantify picogram levels of molecular residue of HE material in the post-detonation dust. An aliquot of sample extract in methanol (e.g., 1 μL of 0.5 mL) was placed onto a resistive material and then thermally desorbed into the AFT-MS. We successfully detected and quantified both HMX and RDX in many of the samples. Based on mass (pg) detected and solution dilution, we back-calculated the mass collected on the swipe or filter (ng per sample). The aerial distribution of molecular residue was consistent with the path of the plume, which was strongly determined by wind speed and direction at the time of each shot. The quantity of material detected appeared to correlate more with distance from the shot and the wind conditions than with shot size. This study demonstrates that the picogram detection levels of AFT-MS are well-suited for quantification of analytes (e.g., HMX and RDX) in environmental samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call