Abstract
Nine fine-grained feldspathoid-, grossular-, spinel-, pyroxene-bearing inclusions from the Allende meteorite were analysed by instrumental neutron activation analysis. On the average, these inclusions are enriched in the refractory lithophile elements Ca, Sc, Ta and the rare earths by factors of 5–30 relative to Cl chondrites but are depleted in the refractory and volatile siderophiles, Ir, Co and Au. The volatile elements Fe, Cr and Zn are present at levels of 3.38–8.51%, 326–2516 ppm and 308–1376 ppm, respectively. Textural, mineralogical and chemical data suggest that the fine-grained inclusions formed in the solar nebula by the simultaneous condensation of volatiles and refractory lithophile elements which failed to condense into the coarse-grained, high-temperature condensate inclusions. The marked differences in the enrichment factors for different refractories in the fine-grained inclusions are caused by relatively small differences in their accretion efficiencies into the coarse-grained ones. The trace element data indicate that the refractories in the fine- and coarse-grained inclusions can only be the cosmic complements of one another if the fine-grained ones represent no more than ~ 20% of the most abundant refractory elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.