Abstract

A quantitative local analytical method with the application of inductively coupled plasma mass spectrometry with laser ablation (LA-ICP-MS) was tested at Vernadsky Institute for the determination of contents of trace elements (Cu, Zn, Co, Ni, Mn, Cr, Sc, V, Ca, Ti, Al, Y, and REE) in olivine. Olivine phenocrysts from volcanic rocks of various geological settings have been studied: island-arc basalts, mid-ocean ridge (MOR) basalts, and high-alkaline continental volcanic rocks. The contents of some elements (Ni, Co, Mn, Cr, Sc, and Zn) systematically vary during the evolution of the composition of olivine, and the concentration fields of these elements in olivine from different settings overlap one another. At the same time, the contents of some other elements (Ca, Al, Ti, V, and Cu) fundamentally differ in olivine from different geological settings. Copper content in olivine from oceanic tholeiites and highly alkaline continental volcanics is 1–3 ppm, which is systematically lower than copper content in olivine from island-arc basalts (3–9 ppm). The concentrations of vanadium in olivine in MOR basalts are higher than in island-arc and alkaline continental ones, which may be due to relatively more reduced crystallization conditions as more favorable for the incorporation of V3+ into the olivine structure. Variations in the distribution coefficients of trace elements between olivine and silicate melt (DOl/Melement) were determined for volcanic rocks from Kamchatka, the Bouvet Triple Junction, and Gaussberg volcano. It has been demonstrated that the unusually high values DOl/MNi of DOl/MNi = 50–150 previously identified for the lamproites of Gaussberg volcano indicate a mismatch between the composition of the quenched glass and the composition of the equilibrium melt for olivine phenocrysts. When using the bulk compositions of Gaussberg rocks, values of DOl/MNi = 11–21 were obtained, which correspond to experimental estimates for high-potassium rocks. The redox crystallization conditions of the studied rocks were estimated using several oxybarometers based on the distribution of vanadium between coexisting olivine and melt. These values were: ΔQFM= +0.6 to +1.5 for oceanic tholeiites of the Bouvet Triple Junction area, South Atlantic, and ΔQFM = +1.5 to +2.4 for Mutnovsky volcano, Kamchatka. Estimates of the redox crystallization conditions of the highly alkaline rocks of Gaussberg volcano significantly vary depending on which model is chosen: ΔQFM= +0.2 to +4.8, which may be due to the strong effect of K2O content in the melt involved in one of the models. The newly acquired analytical data confirmed the possibility of using contents of trace elements in olivine to characterize igneous systems from different geological settings and highlighted the need for additional experimental studies on the distribution of these elements between olivine and melt, especially in highly alkaline systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call