Abstract
The importance of small amounts of glass and paint evidence as a means to associate a crime event to a suspect or a suspect to another individual has been demonstrated in many cases. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. Previous work has demonstrated the utility of elemental analysis by solution ICP-MS of small amounts of glass for the comparison between a fragment found at a crime scene to a possible source of the glass. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The direct solid sample introduction technique of laser ablation (LA) is reported as an alternative to the solution method. Direct solid sampling provides several advantages over solution methods and shows great potential for a number of solid sample analyses in forensic science. The advantages of laser ablation include the simplification of sample preparation, thereby reducing the time and complexity of the analysis, the elimination of handling acid dissolution reagents such as HF and the reduction of sources of interferences in the ionization plasma. Direct sampling also provides for essentially “non-destructive” sampling due to the removal of very small amounts of sample needed for analysis. The discrimination potential of LA-ICP-MS is compared with previously reported solution ICP-MS methods using external calibration with internal standardization and a newly reported solution isotope dilution (ID) method. A total of ninety-one different glass samples were used for the comparison study using the techniques mentioned. One set consisted of forty-five headlamps taken from a variety of automobiles representing a range of twenty years of manufacturing dates. A second set consisted of forty-six automotive glasses (side windows and windshields) representing casework glass from different vehicle manufacturers over several years was also characterized by RI and elemental composition analysis. The solution sample introduction techniques (external calibration and isotope dilution) provide for excellent sensitivity and precision but have the disadvantages of destroying the sample and also involve complex sample preparation. The laser ablation method was simpler, faster and produced comparable discrimination to the EC-ICP-MS and ID-ICP-MS. LA-ICP-MS can provide for an excellent alternative to solution analysis of glass in forensic casework samples. Paints and coatings are frequently encountered as trace evidence samples submitted to forensic science laboratories. A LA-ICP-MS method has been developed to complement the commonly used techniques in forensic laboratories in order to better characterize these samples for forensic purposes. Time-resolved plots of each sample can be compared to associate samples to each other or to discriminate between samples. Additionally, the concentration of lead and the ratios of other elements have been determined in various automotive paints by the reported method. A sample set of eighteen (18) survey automotive paint samples have been analyzed with the developed method in order to determine the utility of LA-ICP-MS and to compare the method to the more commonly used scanning electron microscopy (SEM) method for elemental characterization of paint layers in forensic casework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.