Abstract

Differences in trace element composition and bioavailability between breast milk and infant formulas may affect metal homeostasis in neonates. However, there is a paucity of controlled studies in this area. Here, piglets were fed soy infant formula (soy), cow's milk formula (milk), or were allowed to suckle from the sow from PND2 to PND21. Serum iron concentrations were higher in formula-fed compared to breastfed piglets (P < 0.05). Serum zinc values were higher in milk compared to breastfed or soy groups (P < 0.05). Zinc transporter Zip4 mRNA was elevated in small intestine of the soy compared to breastfed group (P < 0.05). Transporter Znt1 mRNA was greater in small intestine of both formula-fed groups and in liver of the milk compared to the breastfed group (P < 0.05). Metallothionein Mt1 mRNA expression was higher in small intestine and liver of milk compared to breastfed and soy groups (P < 0.05). In liver, metallothionein protein levels and protein bound zinc were also highly elevated in the milk compared to other groups (P < 0.05). mRNA encoding the hepatic zinc-regulated gene Gclc was higher in the milk than soy group (P < 0.05). ChIP assay revealed increased binding of the zinc-regulated transcription factor MTF1 to the promoters of hepatic Mt3 and Gclc genes in the milk compared to the soy group. These data provide evidence that trace element status differs in breastfed, milk-fed, and soy-fed piglets and that despite similar levels of dietary supplementation, allows strong causal inference that significant differences in serum zinc after cow's milk formula compared to soy formula consumption result in compensatory changes in expression of zinc transporters, binding proteins, and zinc-regulated genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call