Abstract

Secondary-ion mass spectrometry (SIMS) U–Pb and trace element data are reported for zircon to address the controversial geochronology of eclogite-facies metamorphism in the Lindas nappe, Bergen Arcs, Caledonides of W Norway. Caledonian eclogite-facies overprint in the nappe was controlled by fracturing and introduction of fluid in the Proterozoic—Sveconorwegian—granulite-facies meta-anorthosite-norite protolith. Zircon grains in one massive eclogite display a core–rim structure. Sveconorwegian cores have trace element signatures identical with those of zircon in the granulite protolith, i.e. 0.31≤Th/U≤0.89, heavy rare earth element (HREE) enrichment, and negative Eu anomaly. Weakly-zoned to euhedral oscillatory-zoned Caledonian rims are characterized by Th/U≤0.13, low LREE content (minimum normalized abundance for Pr or Nd), variable enrichment in HREE, and no Eu anomaly. A decrease of REE towards the outermost rim, especially HREE, is documented. This signature reflects co-precipitation of zircon with garnet and clinozoisite in a feldspar-absent assemblage, and consequently links zircon to the eclogite-facies overprint. The rims provide a mean 206Pb/238U crystallization age of 423±4 Ma. This age reflects eclogite-forming reactions and fluid–rock interaction. This age indicates that eclogite-facies overprint in the Lindas nappe took place at the onset of the Scandian (Silurian) collision between Laurentia and Baltica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call