Abstract
The Kirschner wire (K-wire) is widely used in orthopedic external fixation due to its versatility and clinical effectiveness. However, a significant challenge associated with its use is the potential for bacterial migration, subsequent infection, and dislodgement as the wire penetrates the skin and bone. This study introduces a novel bioactive material, selenium/calcium silicate (Se/β-CS), achieved by integrating selenium—an essential trace element in the human body—into bioceramic calcium silicate. This integration was accomplished using a combined chemical co-deposition method and redox reaction. Furthermore, a uniform and controllable Se/β-CS coating was applied to the K-wire's surface using the Langmuir-Blodgett technique. This coating gradually releases active components—Si, Ca, and Se—that effectively eliminate bacterial infections and promote osteointegration. The findings of this study offer promising opportunities for the use of robust and multifunctional coating materials on implantable devices, particularly within the fields of orthopedics, transplantation, and surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.