Abstract

Abstract In high-resolution biological energy-dispersive x-ray (EDX) microanalysis it is often necessary to measure very low elemental concentrations. As an example, calcium, a physiologically important element, typically occurs in subcellular compartments at concentrations of 10-100 atomic parts per million (corresponding to 1-10 millimole/kg dry weight of sample) and it is ultimately desirable to measure the concentration of this element with a standard error of ±1 atomic ppm (or ± 0.1 millimole/kg). Detection of calcium in biological specimens is further complicated by the presence of relatively high levels of potassium (around 0.5 atomic % or 500 millimole/kg), which gives rise to overlap of the K Kβ and Ca Kα peaks in the EDX spectrum. Counting statistics are frequently the limiting factor for detectability, but this is not necessarily the case because in the analytical electron microscope it is possible to collect spectra for long periods using a high probe current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.