Abstract
Trace element concentrations in toenail clippings have increasingly been used to measure trace element exposure in epidemeological research. Conventional methods such as inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography ICP-MS (HPLC-ICP-MS) are commonly used to measure trace elements and their speciation in toenails. However, the impact of the removal of external contamination on trace element quantification has not been thoroughly studied. In this work, the microdistribution of trace elements (As, Ca, Co, Cu, Fe, K, Mn, Ni, Rb, S, Sr, Ti, and Zn) in dirty and washed toenails and the speciation of As in situ in toenails were investigated using synchrotron X-ray fluorescence microscopy (XFM) and laterally resolved X-ray absorption near edge spectroscopy (XANES). XFM showed different distribution patterns for each trace element, consistent with their binding properties and nail structure. External (terrestrial) contamination was identified and distinguished from the endogenous accumulation of trace elements in toenails─contaminated areas were characterized by the co-occurrence of Co, Fe, and Mn with elements such as Ti and Rb (i.e., indicators of terrestrial contamination). The XANES spectra showed the presence of one As species in washed toenails, corresponding to As bound to sulfhydryl groups. In dirty specimens, a mixed speciation was found in localized areas, containing AsIII-S species and AsV species. ArsenicV is thought to be associated with surface contamination and exogenous As. These findings provide new insights into the speciation of arsenic in toenails, the microdistribution of trace elements, and the effectiveness of a cleaning protocol in removing external contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.